

www.crescendonetworks.com

Corporate Headquarters
6 Yoni Netanyahu Street
Or-Yehuda 60376, Israel
Phone: +972-3-538-5100

US Headquarters
633 Menlo Avenue, Suite 230
Menlo Park, CA 94025
Phone: (866)830-0400

WHITE PAPER

Accelerating and Optimizing Web-based
Applications

Accelerating and Optimizing Web-based Applications - 1 -

Contents

Introduction .. 2

Background.. 2

Figure 1- HTTP request/response ... 2

Figure 2- Persistent HTTP connection... 3

The Problem .. 3

The Solution... 4

Figure 3- Web server handling clients through TCP ... 4

Figure 4- Connection consolidation.. 5

AppBeat DC: Next Generation Web Application Delivery.. 6

Figure 5- Common network configuration for AppBeat DC ... 6

AppBeat DC Features .. 7

Conclusion ... 8

About Crescendo Networks .. 8

Accelerating and Optimizing Web-based Applications - 2 -

Introduction

Internet performance and economy have become the driving force for network architects
and operators. Several techniques have been developed to increase the performance and
economy of server farms and the web applications they provide. This document looks at
the structure of web traffic and discusses the benefits web applications receive from
server offload technology.

Crescendo Networks’ unique approach towards server optimization and application
delivery, its advantages, and the functionality provided by AppBeat DC will be
discussed.

Background

For Internet driven applications, web traffic makes up the majority of what servers deal
with. HTTP (Hyper Text Transfer Protocol) is the communication protocol responsible
for delivering web-based objects and applications from servers to clients. HTTP relies on
TCP as its IP transport protocol. TCP is a session-based protocol that provides error
checking and guarantees delivery of its upper layer protocol (HTTP). Although TCP is
an ideal delivery mechanism for web traffic, it has drawbacks. TCP possesses overhead
that often leads to significant resource utilization on a web server, and poor performance.

In the earliest versions of HTTP there was a one-to-one relationship between a web object
request/response and a TCP session. Each TCP session between client and server was
used to carry only one object from server to the client via HTTP. The figure below better
illustrates this point:

Figure 1 is a simplified version of a web transaction, and only shows the major stages of
the process. A TCP session is opened between the client and the server. An HTTP request
(e.g. for “Object1”) is sent from the client to the server over this newly established
session. The server responds with the object and after delivery and closes the connection.
The process is repeated for every object requested. The TCP stack at each end is
responsible for maintaining its side of the TCP connection. The session maintenance on

Client

TCP Session Tear-down

TCP Session Maintenance

HTTP Communication

HTTP Request for Object1

Object1

TCP Session Set-up

Server

Figure 1:

 A simple example

of an HTTP

request/response

Accelerating and Optimizing Web-based Applications - 3 -

the server side is significant since it’s handling a large number of connections from many
clients. As a consequence most server resources are spent on TCP session handling,
rather than object serving. It became obvious that this was not an optimal way for
HTTP to interact with TCP leading to HTTP version 1.1 and persistent connections

1
.

With persistent connections, the client may request multiple objects from a server over a
single TCP connection.

As before, the client opens the TCP connection to the server. Multiple objects may be
handled over that single connection. Either side of the connection then tears down the
session. The benefits of persistent connections are immediately clear. Both sides deal
with fewer TCP sessions, and the client ends up using less bandwidth for session
maintenance and more for object retrieval. At the same time, the server minimizes the
amount of resources spent on TCP session maintenance with each client. Support for
persistent connections has been one of the most major improvements to the HTTP
protocol, and specifically to the way it interacts with TCP.

 The Problem

Although persistency enhances the interaction between HTTP and TCP, it doesn’t solve
all TCP-related resource issues for servers. Persistent connections work well for the
server if it has to deal with only a handful of web clients.

In widespread Internet applications, however, a server is faced with a large number of
clients approaching the application through various WAN connections. This poses three
areas of concern for a server, when it comes to TCP processing:

1
 Actually, persistent connections were introduced as an addition to version 1.0 of the HTTP protocol, after

it was originally released. However, HTTP 1.1 is where persistent connections became an official part of
the HTTP specifications.

Client

TCP Session Maintenance

HTTP Communication

HTTP Request for Object1

Object1

TCP Session Set-up

Server

HTTP Request for Object2

Object2

HTTP Request for Object3

Object3

Figure 2:

 A simple example

of a persistent

HTTP connection

TCP Session Tear-down

Accelerating and Optimizing Web-based Applications - 4 -

� Dealing with a large number of TCP connection setup/teardown operations.

� Maintaining a large number of simultaneous connections.

� Extra processing necessary in dealing with WAN-based connections (slow
start, congestion avoidance, dropped packets, retransmissions, etc). The
bottom line is that in a web environment, servers have a significant burden
when it comes to dealing with TCP session maintenance. Studies have shown
that in a high throughput environment, a server can spend significant
amounts of its resources on dealing with TCP connections. This is why
offloading these tasks from servers is critical to gaining maximum
performance.

The Solution

Although a number of approaches have been deployed for handling application
scalability, they often fail to address server resource optimization. Load balancing traffic
among multiple servers, for example, is a vital to a web application for scale and high
availability, but it doesn’t solely address a single server whose resources are not
optimized. Likewise, upgrading to bigger/stronger servers is great for providing more
available processing cycles, but those cycles are still not being used to their full potential.

The conclusion is that a broader approach is necessary to address the problem. A
successful solution is one that significantly reduces a server’s TCP-related pain points
discussed above, while not requiring any change to the servers or the network around
them.

Connection Consolidation is a technology that addresses all these issues, with the
purpose of minimizing the number of connections a server handles, and maximizing the
amount of resources dedicated to object delivery. The basic concept is relatively simple.
Figure 3 and 4 shows a simplified version:

TCP Session
GET A; GET B; GET C

TCP Session
GET A; GET B; GET D

TCP Session
GET C; GET D; GET E

TCP Session
GET B; GET A; GET D

TCP Session
GET C; GET D; GET E

TCP Session
GET A; GET B; GET C

TCP Session
GET B; GET C; GET E

TCP Session
GET E; GET F; GET G

TCP Session
GET F; GET A; GET C

TCP Session
GET A; GET B; GET C

Server

Figure 3:

 A web server

handling HTTP

clients through TCP

Accelerating and Optimizing Web-based Applications - 5 -

In Figure 3, the server has many TCP connections to maintain, while serving one or more
objects per connection. Figure 4 shows the same scenario after Connection Consolidation
has been implemented through an intermediary Connection Management Device
(CMD). The CMD Device acts as an intermediary between clients and servers. The task
of the CMD is to act as the server towards the clients and appear as a client to the server.
The CMD assumes the responsibility of dealing with all client-side connections. The
CMD consolidates the front-end object requests from client-side connections to just a few
server-side connections. The connections on the server side have long lifetimes and are
used repeatedly as new object requests come in. Various algorithms may be used by the
CMD to determine when a new session should be opened to the server, or which existing
session a request should be carried over. The benefits of Connection Consolidation
through the CMD become quickly apparent:

� Since the CMD handles all client side connections, the server is no longer
tasked with rapidly setting up and tearing down connections.

� Because of Connection Consolidation, the number of simultaneous TCP
sessions a server has to deal with is drastically reduced.

� The CMD shields the server from WAN-imposed client-side connection
issues. This means the server resources are not affected by any delay,
congestion, or packet loss in the client connection.

� The few connections that the server does use to the CMD allow the server to
operate at minimum overhead and maximum performance, as if the clients
were on the same LAN. Connection Consolidation is a significant enabler for
web servers and their applications. CMDs must have a strong enough
architecture to be able to handle the necessary TCP processing. Because of its
unique location in a network, it makes sense for a CMD to provide other
functionality such as compression, SSL offload, load balancing and more.
This opens the door for a large number of auxiliary functionality, which
warrants its own separate discussion.

AppBeat DC: Next Generation Web Application Delivery

GET A; GET B; GET C

GET A; GET B; GET D

GET C; GET D; GET
E GET B; GET A; GET D

GET C; GET D; GET
E GET A; GET B; GET C

GET B; GET C; GET E

GET E; GET F; GET G

GET F; GET A; GET C

GET A; GET B; GET C

Serve
r

Connection
Management

Device

GET A; GET B; GET
C;
GET D; GET C; GET F

GET D; GET E; GET
C;
GET B; GET C; GET F

GET B; GET E; GET F;
GET G; GET A; GET B

Figure 4:

 Connection

consolidation

Accelerating and Optimizing Web-based Applications - 6 -

Crescendo Networks’ AppBeat DC is built from the ground up to provide superior
server acceleration and resource optimization. AppBeat DC’s purely hardware-based
platform, Maestro, is based on over 80 micro- engines, explicitly tasked with various
application-specific processes. This unique distributed design provides maximum
flexibility for deploying new functionality, while maintaining extremely high levels of
scalability and performance. AppBeat DC is deployed logically between the servers and
the network; typically between the servers and the firewall/router. AppBeat DC is non-
intrusive, and requires no service interruptions or network reconfiguration.

As shown in Figure 5, AppBeat DC assumes the final responsibility for delivering client
requests to the servers. The core AppBeat DC’s TCP connection management
functionality is Crescendo’s Short- Lived Transaction (SLT™) technology. SLT™ has
three main components that work together to provide the relevant services for the
network:

� Connection Management Algorithm: Server-side connections are managed
through a set of advanced algorithms that provide an optimal approach to
connection consolidation. These optimized connections operate at maximum
LAN speeds and take into account factors such request type to facilitate
transaction processing.

� Request Processing Algorithm: As a session terminating intermediary,
AppBeat DC is responsible for terminating client connections, processing the
requests that these connections carry, and then delivering them to the server

A
P
P
B
E
A
T

D
C

Request

Response

Request

Response

Request

Response

Request

Response

Request

Response

Request

Response

Request

Response

Request

Response

Clients

Virtual IP
Address

Optimized
TCP

Connections

Server
Farm

Figure 5:

A common

network

configuration

for an AppBeat

DC

deployment

Accelerating and Optimizing Web-based Applications - 7 -

over existing, or new, server-side connections. SLT™ optimizes this process
by providing the appropriate buffering for both requests and responses.

� Response Optimization: By completely shielding the server from network
and client issues, AppBeat DC creates a highly optimized environment for
servers. Servers deal with fewer connections and can transmit responses to
the network at maximum throughput. Objects are served as quickly as
possible, allowing the server to quickly move on to the next request to be
processed.

AppBeat DC Features

AppBeat DC supports multiple functions, from compression to load balancing, on a

single device. And unlike other application acceleration solutions, it can deploy all of

these functions at once without any performance penalty.

� TCP Offload, Multiplexing and Acceleration: AppBeat DC significantly
reduces the processing load on servers by handling TCP termination for
clients. AppBeat DC receives all incoming requests and multiplexes and
redirects them to servers over a controlled number of persistent server-side
connections. This approach relieves the servers of the connection setup,
teardown and management processes that normally consume valuable
server resources. The result is a dramatic increase in application
performance.

� Compression: Object compression minimizes the number of bytes that need
to travel from web site to client. Most browsers accept compressed data

2
.

AppBeat DC improves client response times and significantly reduces
bandwidth requirements. With its dedicated, solid-state compression
processor, AppBeat DC can compress content by up to 85%, operating at
speeds of up to 3 Gbps, with zero latency. It supports multiple compression
levels, all with guaranteed zero latency.

� Comprehensive Load Balancing: Load balancing shields users from server
failures or overloaded, slow servers, while enabling the even distribution of
resources across the data center. AppBeat DC provides load balancing on a
request-by-request basis, determining the optimal server for each request
based upon actual HTTP load. Global server load balancing functionality

extends load balancing beyond the single data center, enabling traffic
distribution and control across geographically distributed data centers.

� SSL Acceleration and Offload: Encryption and decryption tasks involved in
handling SSL (Secure Sockets Layer) are a severe burden to any web server.

AppBeat DC offloads this CPU-intensive task, freeing server resources and
making the site faster and more secure. AppBeat DC handles both SSL
session setup and bulk data encryption tasks, employing dedicated
hardware designed to accelerate these resource-intensive processes.

� Application Assurance and Availability: Severe changes in user patterns,
traffic spikes and other traffic anomalies can seriously affect server

2
 Commonly used compression algorithms are gzip and deflate, both supported by common browsers and

AppBeat DC.

Accelerating and Optimizing Web-based Applications - 8 -

performance. AppBeat DC maintains a normalized operating environment,
shielding servers from erratic client behavior as well as malicious attacks
(DDoS) and flash crowd events.

Conclusion

The benefits of accelerating and optimizing Web-based applications are self-evident.
AppBeat DC’s unique hardware-based capability provides the highest performance and
feature concurrency in the industry. AppBeat DC’s comprehensive feature set is fully
integrated with all of its application optimization and server offload functionality. Load
balancing can be used together with SSL offload or content compression, for example,
while still being able to use all the TCP optimization functionality of the device. Because
of its unique and powerful task-specific, hardware-based architecture, the highly
scalable, multi-gigabit AppBeat DC application delivery solution provides all these
functions at maximum performance.

About Crescendo Networks

Crescendo Networks is the recognized performance leader for accelerating and
optimizing the delivery of business-critical, Web-enabled applications. The company’s
unique multi-tier application delivery architecture dramatically improves the operation
of today's demanding application infrastructure. The world’s largest corporations and
fastest growing Web properties rely on Crescendo for the application performance and
efficiency needed to ensure usability, facilitate rapid business growth, lower IT costs and
capture additional revenue. To learn more about Crescendo Networks’ application
delivery solutions, visit www.crescendonetworks.com.

© 2008 Crescendo Networks. All rights reserved. Crescendo Networks, AppBeat, Maestro, SLT and ALP are trademarks of

Crescendo Networks. All other company and product names mentioned herein may be trademarks of their respective companies.

Rev. 0908

